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ABSTRACT
Deep hashing has gained growing momentum in large-scale image
retrieval. However, deep hashing is computation- and memory-
intensive, which demands hardware acceleration. The unique pro-
cess of hash sequence computation in deep hashing is non-trivial
to accelerate due to the lack of an efficient compute primitive for
Hamming distance calculation and ranking.

This paper proposes the first PIM-based scheme for deep hash-
ing accelerator, namely PIM-DH. PIM-DH is supported by an algo-
rithm and architecture co-design. The proposed algorithm seeks to
compress the hash sequence to increase the retrieval efficiency by
exploiting the hash code sparsity without accuracy loss. Further,
we design a lightweight circuit to assist CAM to optimize hash
computation efficiency. This design leads to an elegant extension
of current PIM-based architectures for adapting to various hashing
algorithms and arbitrary size of hash sequence induced by pruning.
Compared to the state-of-the-art software framework running on
Intel Xeon CPU and NVIDIA RTX2080 GPU, PIM-DH achieves an
average 4.75E+03 speedup with 4.64E+05 energy reduction over
CPU, 2.30E+02 speedup with 3.38E+04 energy reduction over GPU.
Compared with PIM architecture CASCADE, PIM-DH can improve
computing efficiency by 17.49× and energy efficiency by 41.38×.

1 INTRODUCTION
Large-scale image retrieval has attracted increasing attention due
to its wide application in various scenarios (e.g., recommendation
systems [12], search engines [18], etc.). For example, more than 1
billion images are uploaded every month on Facebook [7]. There-
fore, the effective search of massive data becomes more critical, and
nearest neighbor search, i.e., searching for the most similar data
items, becomes an important research topic. However, the search
efficiency of nearest neighbor search is limited by the dramatic
increasing data volume, storage space, and computation complexity.
To tackle this challenge, hashing-based methods have been pro-
posed and achieved remarkable successes due to their accuracy and
efficiency [2, 21]. It aims to learn a hash function that maps images
in a high-dimensional pixel space to a low-dimensional Hamming
space while maintaining their similarity in the pixel space [23].
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Existing hashing-based image retrieval methods can be divided
into shallowmethods and deep learning-basedmethods (called deep
hashing methods) in terms of adopted feature extraction mecha-
nisms [2, 11]. Compared to shallowmethods, deep hashingmethods,
which exploit the powerful ability of convolutional networks to
capture features, significantly improve performances [23]. In this
paper, we focus on deep hashing methods, whose computational
paradigm consists of three phases, feature extraction phase, hash
generation phase, and retrieval phase [1, 21]. 1) In the feature ex-
traction phase, it learns to map data from the original space to
the feature space through a deep convolutional neural network; 2)
In the hash generation phase, it maps extracted features to hash
sequences so that the generated hash sequence heavily depends on
the extracted features; 3) In the retrieval phase, it computes the hash
sequences with category correlations and ranks their Hamming
distance, and outputs the closest category.

Nevertheless, deep hashing methods require considerable com-
putational resources owing to the complicated nature of the fea-
ture extraction and Hamming distances calculation for large-scale
data (e.g., image retrieval on the recommending platform in Taobao,
which requires hash computations on 600 billion entries [17]). In
order to boost the inference performance of deep hashing methods
without reducing accuracy, systems (e.g., recommendation system
in Facebook, Taobao) start to adopt efficient domain-specific hard-
ware accelerators for at-scale retrieval [7]. The major performance
bottlenecks come from the heavy use of dot-product in the fea-
ture extraction phase, massive number of searches in the retrieval
phase [21, 23], and the frequent data movement between DRAM
and processing elements (PEs) [15].

We identify processing-in-memory (PIM) as an effective archi-
tecture that can accelerate both the execution of vector-matrix
multiplication and hash computation in deep hashing methods
through performing the computation and search within memory
macros [9, 15]. PIM dot product engine and PIM search engine can
be efficiently implemented in Multiply-Accumulate (MAC) cross-
bar as well as Content Addressable Memory (CAM) crossbar using
Resistive Random Access Memory (ReRAM) [19]. Previous ReRAM-
based PIM accelerators have demonstrated their huge potential in
energy-efficient vector-matrix multiplication [4, 15] and content-
based search operation [3, 19]. Unfortunately, it is nontrivial to
extend these architectures to the field of image retrieval. The main
hurdle is that the PIM architecture stores the operands of hash
computation (i.e., gallery hash sequences) to the CAM crossbar
and binds these operands to the searching operation. Unlike the
conventional Von-Neumann architecture, in which the PEs can
handle the Hamming distance calculation and ranking, the PIM
architecture can only efficiently search for the matching between
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two sequences and lacks the primitive to support hash calculation.
Thus, the efficiency of hash computation in the PIM architecture
is bounded by the length of the hash sequence and the searching
mechanism. In summary, the extremely high search cost makes it
challenging to accelerate deep hashing by the PIM-based design.

To combat these challenges, in this paper, we innovate a novel
PIM-based scheme called PIM-DH to accelerate deep hashing for
image retrieval tasks. We filter out the useless hash codes in the
hash sequence inspired by weight pruning to improve search effi-
ciency. In addition, we design the assisted circuit to optimize the
efficiency of CAM matching for hash computation by using the
leakage current latency mechanism. The main contributions of our
work can be summarized as follows:

• As far as we know, this work is the first to exploit PIM to
accelerate deep hashing for image retrieval tasks.

• We propose the hash sequence pruning to filter out redun-
dant hash codes that have no contributions or even negative
contributions to improve the resource utilization and reduce
the complexity of hash computation.

• We design an execute-search dual-engine PIM-based archi-
tecture, including MAC compute engine, interface circuits
and tailored CAM compute engine, to support flexible prun-
ing method and optimize hash computation without incur-
ring high extra costs.

• Experimental results of various datasets show that PIM-DH
achieves up to 17.49× speedup and 41.38× energy efficiency
improvement over the PIM-based accelerator.

2 BACKGROUND AND MOTIVATION
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Figure 1: The process of deep hashing methods.

2.1 Deep Hashing Method
With the explosive growth of data, hashing methods have been
drawing more attention [11, 23]. By reducing the dimensionality
of high-dimensional feature matrix into low-dimensional, compact
binary hash codes, hashing methods have advantages in retrieval
speed and storage overhead that other methods cannot match [1,
2]. As shown in Fig. 1, deep hashing methods mainly consist of
three phases: training the backbone neural network to extract high-
dimensional features from the input data; mapping the extracted
high-dimensional features into compact binary hash sequences;
comparing the generated hash sequences with the gallery hash
sequences, and ranking their Hamming distance to find the most
similar category.
2.2 ReRAM-based PIM Designs
ReRAM is the emerging non-volatile memory with appealing prop-
erties of high density, fast read access, and low leakage power [4, 19].
ReRAM crossbar arrays support parallel in-memory MAC opera-
tions and ReRAM CAM for the match [10, 15, 20].

ReRAM-based MAC Crossbar. Existing ReRAM-based neural net-
work accelerators utilize plenty of crossbar arrays as low-energy
and high-speed dot-product engines [15, 20]. As shown in Fig. 2(a),
ReRAM-based crossbars handle vector-matrix multiplication in the
analog domain. First, the inputs are converted by the DACs into
voltage pulses to drive the cells on the corresponding wordlines.
Then, the currents generated in cells from the same bitline based
on Kirchhoff’s law are aggregated, representing the output of the
MAC operation. Due to process limitations, each weight is parti-
tioned into multiple cells to store, so the total current in each bitline
corresponds to the partial sum of the product. Next, accumulated
currents from the bitline are transferred to the ADC to convert the
current amplitude (analog signal) into a digital signal to accumulate
the partial sums further [4, 15].
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Figure 2: The overview of ReRAM-based crossbar.

ReRAM-based CAM Crossbar. CAM is often used in hardware
implementation of in-memory computing for parallel search of
large datasets because of its high speed and energy-efficiency [3, 19].
It compares the input search data with the stored data table and
returns the matching data address. Compared with conventional
8-transistor SRAM-based Ternary CAM (TCAM), 2-Transistor-2-
Resistor ReRAM-based TCAMhas 6× higher density [19]. As shown
in Fig. 2(b), ReRAM-based TCAM realizes bitwise XNOR-based
search operations on each pair of cells by applying complementary
bias voltages to the ReRAM devices [19]. When a row of stored data
is matched, the connected sense amplifier (SA) with the row fires a
matching signal, which would be captured for further processing.
Binary CAM is the simplest CAM, which can search for data entirely
consisting of ‘1’s and ‘0’s. TCAM allows a third match state of ‘X’,
which means do not care. Data bit ‘1’ consists of the left cell in
High Resistance State (HRS) and the right cell in Low Resistance
State (LRS), while the data bit ‘0’ is the opposite, and data bit ‘X’
consists of both cells in HRS.

3 MOTIVATION AND KEY IDEA
Even though the prior ReRAM-based PIM designs have explored
DNN accelerations and CAM-based match applications, none of
these works can directly accelerate deep hashing methods for effi-
cient image retrieval due to the intrinsic challenges as follows:

Massive number of searches. Hamming distance calculation
involves multiple searches for ReRAM CAM. This is because the
matching principle of ReRAM CAM on the leakage current mecha-
nism can check only whether two contents are equal or not (i.e., the
equality comparison of the query hash sequence and the gallery hash
sequence) [3, 8, 19]. Suppose the length of query hash sequence is 𝐿,
in the worst case, 2𝐿 − 1 matches on ReRAM CAM in a bit-by-bit
masked way are required for the Hamming distance calculation,
which is a significant overhead.
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Figure 3: Relation-aware hash sequence pruning.
Extreme CAM overhead. The gallery hash sequences stored in

the ReRAM CAM are determined by the length of hash sequences.
A typical image retrieval application needs hash sequences of the
length of 64 or 128 [1, 2]. For example, ILSVRC2012 dataset [6]
contains 10,000,000 labeled images, requiring ≈ 153MB of CAM
overhead with the 128-bit hash sequence.

We observe that the length of the hash sequence determines
both the retrieval efficiency and the CAM overhead. Therefore, in
this work, we propose PIM-DH, a first ReRAM-based deep hashing
accelerator with algorithm/hardware co-design optimizations. A
novel relevance-ware pruning method is proposed to reduce hash
codes required in Hamming distance calculation, enabling little
redundancy among the features represented by the hash codes.
This pruning method consists of offline structural pruning and on-
the-fly non-structural pruning, which reduce the CAM occupancy
of gallery hamming sequence and the latency of hamming distance
calculation, respectively. Crucially, our lightweight assisted logic
circuit fully leverages the leakage current latency match of ReRAM
CAM to perform Hamming distance, thereby reducing the number
of matches, resulting in less latency and energy consumption of
Hamming distance calculation.
4 RELEVANCE-AWARE PRUNING
We exploit the fine-grained hash code sparsity and prune hash
codes that are useless or even play a negative role in the retrieval
phase. The pruning method has two phases: 1) offline structural
pruning to reduce the length of gallery hash sequence; 2) on-the-fly
relation-aware pruning to filter out redundant hash codes of query
hash sequence. We aim to boost retrieval efficiency by removing the
hash codes with relevance overlap of features in the hash sequence
𝒉k = {ℎ0, ..., ℎ𝐿}; ℎ𝑖 ∈ {0, 1}. We use a two-layer Multi-Layer
Perception (MLP) module to capture the relevance among the hash
codes represented by the feature, which can be described as:

𝑅𝑖, 𝑗 = 𝑀𝐿𝑃 ( [F𝑖 ∥ F𝑗 ]), ∀ 0 ≤ 𝑖, 𝑗 ≤ 𝐿, 𝑖 ≠ 𝑗 (1)
where ∥ indicates the features represented by the hash code ℎi are
concatenated with the features represented by the hash code ℎj.
We show the overall logic of our algorithm in Fig. 3. Based on the
relevance metric, we exploit hash code sparsity in two phases.

Offline Crossbar-aware Pruning. A warm-up method is to
combine the structural sparsity with crossbar size. We first apply
the structural pruning on the gallery hash sequences. After that, we
store the gallery hash sequences on the CAM with the exception of
the pruned hash codes in the hash sequence. As the length of hash
sequences is shorter, multiple hash sequences can be placed in the
same crossbar-row, increasing resource utilization. However, this
results in an increase in the number of searches required, which
will be discussed in Section 6.2.
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Figure 4: The gallery hash sequence mapping on the crossbar array.

We find that the length of the hash sequence and the size of
the selected crossbar affect the selection of the pruning rate. Fig. 4
shows an example of the above process. We summarize three rules:
1) Suppose the length of the hash sequence is larger than the cross-
bar size. Here, we take the crossbar size as a strict limit, i.e., the
length of pruned hash sequence will be less than or equal to an
integer multiple of the crossbar size. Suppose the hash sequence
is smaller than the crossbar size. 2) To achieve better performance,
one hash sequence is mapped to a row of the crossbar; 3) To achieve
higher resource utilization, multiple hash sequences are mapped to
one row of the crossbar.

On-the-fly Relation-aware Pruning. Suppose we need 𝐿 hash
codes to represent the query hash sequence; the goal is to repre-
sent the whole query hash sequence with fewer hash codes while
guaranteeing the retrieval accuracy of images. Since different input
values may have different impacts on the final accuracy [22], we
assume that each hash code in the query hash sequence contributes
differently to the category classification. Thus, we want to set a
mask sequence 𝒎k = {𝑚0, ...,𝑚𝐿}; 𝑚𝑖 ∈ {0, 1} to mask some hash
codes with redundant information. The length of the mask sequence
is equal to the length of the original query hash sequence 𝐿 and
masking bits ‘0’ identify the position of pruned in the original hash
sequence.

We integrate the training process to evolve hash code sparsity
by enforcing relevance-wise restrictions at every training iteration.
In the forward pass, the relevance among the hash codes is made
as the MLP output. Then, the hash sequence is sparsified based
on the relevances, and the hash computations are carried out with
the sparse version of the hash sequence. The sparsified hash codes
indicate that these positions in the hash sequence do not need to be
compared. The mask sequence 𝒎k is generated in every forward
pass by identifying the maximum overlap relevance of features. The
binary mask of 𝒎k element-wisely is applied on the query hash
sequence for hash codes selection in the retrieval phase.

During the training, the r-percentile of relevance of features,
which exceeds 𝑟 ∗ 𝐿 of them, is recorded. The average value of
features of all these r-percentiles is denoted as 𝑡ℎ𝑟 , which can elimi-
nate the outputs in the top 𝑟 portion based on the features with the
larger overlap relevance against each other. Specifically, we aim to
enable the features represented by the remaining hash codes to have
little relevance to each other. The generated mask sequence also
plays an important role in the backward pass. The gradients for
the weights connected to without masked hash codes are directly
back-propagated, and the gradient for the weights corresponding
to the features represented by masked hash codes is multiplied by
a scaling factor:

𝜕

𝜕𝒘
= 𝒎k ⊙

𝜕

𝜕𝒘
+ (𝑰 −𝒎k) ⊙

𝜕

𝜕𝒘
𝛼 (2)



where 𝑰 is the vector, the element’s value is set to 1 and the size is
equal to the mask 𝒎k. Using a smaller value as the scaling factor 𝛼
(e.g., 0.1) usually shows superior performance in practice compared
to propagating the gradient directly to the masked weights (𝛼 =

1) or masking its gradient completely (𝛼 = 0) [14]. We repeat
the above training process until the model converges. Next, we
conduct the on-the-fly pruning for inference and evaluate whether
the retrieval accuracy canmeet the expected requirement. If yes, the
threshold are determined. Otherwise, we will repeat the above steps
by halving the threshold. Through trial-and-error, the above process
can always find the satisfactory values within a few iterations.

During the inference, if the feature value exceeds the threshold
𝑡ℎ𝑟 , the bit at this position of the mask sequence 𝒎k is set to ‘1’,
which means this hash code represented features is important. As
a result, we feed the pruned hash sequence 𝒉k · 𝒎k to the next
retrieval phase, and the mask sequence 𝒎1:𝐿 is integrated into the
CAM compute engine.

Image Retrieval

The  backbone 
network

Hamming Distance 

Calculation and 

Ranking

CAM 

Computing 

Engines

Deep Hash Module Key Computation Part  Functional Component

Hash Sequence 

Conversion

Interface 

circuits

MAC

Computing 

Engines

Vector-Matrix 

Multiplication

y = x·M

Features 

Extraction

Hash 

Generation 

Figure 5: Overview of the PIM-DH for deep hashing methods.

5 PIM-DH ARCHITECTURE
This section begins with the present the overall architecture of
PIM-DH and demonstrate the new data path. Afterward, we design
lightweight circuits to extend the CAM to support efficient compute
primitive for Hamming distance calculation and ranking.

5.1 Overall Architecture
As shown in Fig. 5, deep hashing methods consist of three main
modules: feature extraction, hash generation, and image retrieval,
where the main computational parts are vector-matrix multiplica-
tion, hash sequence conversion, and Hamming distance calculation
and ranking. We design efficient architecture around all the above
operations to support them, as shown in Fig. 6, which consists of
three types of functional components.

Vector-Matrix Multiplication can be efficiently completed by
MACCompute Engines ( 1 in Fig. 6), consisting of ReRAM cross-
bars, SRAM-based input and output buffers, which supply inputs to
and store outputs from the crossbars and peripheral circuits. MAC
Compute Engines are responsible for executing the computations of
fully connected and convolutional layers in the backbone network,
where the dominant computation is the MAC operation.

Hash Sequence Conversion then compares the image signa-
tures generated by feature extraction with the threshold to yield the
binary hash sequence for image retrieval. This can be supported by
Interface Circuits ( 2 in Fig. 6), which consists of logic circuits
between the MAC compute engines and the CAM compute engines.
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Figure 6: The architecture and circuits of the proposed PIM-DH.

It dynamically controls the mask generation to skip the redundant
hash codes for feeding not care state to CAM compute engines. We
first fetch inputs to the MAC compute engines, then, we need to
convert the output (extracted features) of the MAC crossbar to the
hash code in the query sequence, which specific steps are as follows:
1) the hash sequence is generated by comparing the result from the
MAC compute engine with the threshold; 2) the query sequence is
combined with the pruning threshold to adjust the mask sequence;
3) the “AND” operation is performed to generate the pruned query
sequence and the corresponding mask for the subsequent image
retrieval operation. After that, the pruned query sequence is fed to
the CAM compute engines for querying the category.

Hamming Distance Calculation and Ranking can be effi-
ciently processed by CAM compute engines, consisting of CAM
crossbar ( 3 in Fig. 6)) assistedwith dedicated lightweight circuit ( 4
in Fig. 6)), which serve as the searching engines to execute the hash
computation of image retrieval efficiently. The main idea is to archi-
tect an extra circuit to capture the latency of leakage current when
the mismatch happens among the query and gallery sequences.
As a result, SIMSnn achieves the differential comparison than the
equality comparison in the conventional designs [3, 19] to reduce
the latency of Hamming distance calculation.

Multiple compute engines (denoted by MAC, CAM in Fig. 6)) and
interface circuits are connected together in a mesh-based network
while the data flow between different phases in a pipelined manner.
The central controller orchestrates the flow of operation among
these functional components.
5.2 CAM Search Mechanism Optimization
In this section, we present the implementation details of Hamming
distance calculation in PIM-DH, and optimize the searchmechanism
to reduce the number of frequent searches for hash sequences. 3
and 4 in Fig. 6 illustrate the implementation of the searching
process. We take full advantage of the execution mechanism of
CAM to achieve the efficient search of hash sequences. Initially,
we set the bits of the mask register induced by the hash sequence
pruning. First, the mask register will activate the bits corresponding
to ‘1’ in the mask to perform thematch operation between the query
and gallery sequences. In this way, PIM-DH enables masking the
column index according to the mask such that the match operation
only compares unmasked hash codes in the sequence. This feature
naturally supports our pruning on the query hash sequence.

We design the assisted circuit for ReRAM CAM to achieve
efficient Hamming distance calculation and ranking. If some rows
are tagged by the Label-C ( 4 ), it means that the corresponding
category is retrieved. Specifically, the closer the bits on the match
line are to the given hash sequence, the more slowly the current on
the match line leaks. Thus, we design the circuit for recording the



Table 1: PARAMETERS OF THE PIM-DH ARCHITECTURE.

Component Configuration Area
(mm2×10-3 )

Power
(mW)

MAC Compute Engine

MAC Crossbar
128 × 128
2-bit/cell
number: 8

0.24 2.44

DACs 1-bit
number:8 × 128 0.17 4.1

ADC
frequency:1.2GSps

number:8
resolution:8-bit

9.6 15.9

S&H number:8 × 128 0.023 0.0055
S+A number:4 0.24 0.2

CAM Compute Engine

CAM Crossbar 128 × 128, 1-bit/cell
number: 8 0.34 2.84

Sense Amplifier number: 8 × 128 2.35 5.42
Label-C Logic 0.033 0.014

latest leaked row number and counting corresponding cycles. “out”
corresponds to the output of CAM, where each bit corresponds to
whether the current cycle of that row produces output. “out” and the
output of the previous cycle (recorded in the D Flip-Flop) perform
an XNOR operation and are recorded in the D Flip-Flop (DFF)
simultaneously. The XNOR operation results are fed to the encoder,
and the corresponding row number is generated. Meanwhile, “out”
is connected to AND gates, and the row number is output only
when all rows have yielded their results. Here, we use a counter
driven by the clock signal to record the corresponding cycle number.
The AND gates output performs AND operation with the encoder
output and is used as the enable signal for the counter to output
recorded cycle.

6 EVALUATIONS
6.1 Experiment Setup and Benchmark
We build a simulator for the PIM architecture using the same MAC
crossbar configuration as the ISAAC-like design [15]. The power
consumption parameters of the CAM crossbars are obtained by
performing SPICE simulations using the ReRAM model from [3]
in 32nm technology. The read energy consumption and latency
are 1.08pj and 29.31ns, respectively [3]. For the ADC and DAC, we
use the model from [15]. We utilize CACTI [13] at 32nm technol-
ogy to provide the power consumption and area of all memories
(including eDRAM buffers, input register, output register, mask
register and etc.). The designed circuits is modeled in Verilog RTL
and synthesized using Synopsys Design Compiler [16] at 32nm
technology. Table 1 shows the area and power parameters of the
main components of our PIM-DH. The proposed pruning method
retrain the backbone model after pruning for the threshold, and we
adopt the ADMM algorithm for the retraining process [22]. Dur-
ing the retraining, we set the stochastic variation be 𝜎 = 0.025 to
guarantee the retrieval accuracy and robustness of PIM-DH.

The datasets that we use to evaluate our proposed methods are
two widely-studied image retrieval datasets: NUSWIDE [5], and
ImageNet [6]. We evaluate DSH [11], DHN [23], CSQ [21], Hash-
Net [2] on these datasets. For image retrieval, the length of the
hash sequence usually used is 16 to 128. We adopt Mean Average
Precision (mAP) as the metric, which is identical as used in [1, 2].
We compare the evaluation results of PIM-DH with three inference
designs: (1) PyTorch on the Intel Xeon Silver 4108 CPU; (2) Py-
Torch on a NVIDIA RTX 2080 GPU, and (3) modified CASCADE [4]
followed by the CAM for the hash computation in a naive manner.
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Figure 7: the voltage of the match line and the output of the SA
versus mismatched bits.

6.2 Results and Analysis
Impact on the mismatched bits of CAM. Fig. 7 first shows the
relationship between the number of mismatched bits and the volt-
age of match lines for the execution of the CAM. We can find the
maximum number of mismatched bits that CAM has the potential
to distinguish. All match lines are precharged with 1.0𝑉 , LRS =
5𝐾Ω, HRS = 50𝐾Ω, and the number of mismatched bits is varied
from 1 to 4. The voltage pull-down is attributed to the increment
of mismatched bits on the same match line. PIM-DH records the
time of discharge to identify the number of mismatched bits by the
designed circuits and adjusts the frequency of the peripheral circuit
to match the discharge speed as needed. Therefore, the higher the
frequency of the peripheral circuit, the higher the number of mis-
matched bits that can be distinguished, and the lower the number
of CAM searches performed. Naturally, this leads to higher overall
system performance but lowers energy efficiency marginally.
Pruning Performance. Table 2 shows the comparison results on
two datasets. We can observe that our proposed pruning method in
PIM-DH can effectively remove useless, or even negative-role, hash
codes in the hash sequence, resulting in better performance of the
processed model. Specifically, performance boosts of > 2% , > 1% in
terms of mAP for NUSWIDE and ImageNet on average, respectively.
Besides, the hash sequence length is reduced by our method, which
can effectively increase the efficiencywhen performing CAM search
for hash computation following.
Energy, Area Consumption and Performance. We set the CPU
result as the baseline and compare the speedup and energy ef-
ficiency of deep hashing methods deployed on other platforms
normalized to CPU, as shown in Fig. 8. We can find that PIM-DH
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Figure 8: (a) Speedup and (b) Energy efficiency comparison with
deep hashing methods (128-bit hash sequence) deployed on the vari-
ous platforms (i.e., CPU, GPU and modified CASCADE).



Table 2: Mean Average Precision (mAP) Comparison of Hamming Ranking with/without PIM-DH Under Different Hash Sequence Length.

DataSets Methods Ori. PIM-DH Ori. PIM-DH Ori. PIM-DH Ori. PIM-DH
16 bits 12 bits 32 bits 21 bits 48 bits 30 bits 64 bits 39 bits

ImageNet
DSH [11] (CVPR) 0.4025 0.4137 0.4914 0.5077 0.5254 0.5371 0.5845 0.6038
DHN [23] (AAAI) 0.4139 0.4315 0.4365 0.4536 0.468 0.4842 0.5018 0.5243
HashNet [2] (ICCV) 0.3287 0.3472 0.5789 0.6003 0.6365 0.6621 0.6656 0.6948

NUSWIDE
DSH [11] (CVPR) 0.6338 0.6544 0.6507 0.6711 0.6664 0.6923 0.6856 0.7163
DHN [23] (AAAI) 0.6471 0.6703 0.6725 0.6949 0.6981 0.7236 0.7027 0.7364
HashNet [2] (ICCV) 0.6821 0.7062 0.6953 0.7231 0.7193 0.7506 0.7193 0.7558

achieves 4.75E+03 speedup and 4.64E+05 energy reduction over
CPU, 2.30E+02 speedup and 3.38E+04 energy reduction over GPU
on average, respectively, which is due to the energy efficiency char-
acteristic of ReRAM crossbars. Besides, PIM-DH can also achieve
an average 17.49× speedup and 41.38× energy reduction over PIM
design. This is mainly because the process of hash computation is
optimized by our dynamic pruning in Section 4 and the dedicated
search mechanism in Section 5.2.

Leakage

Mask

SA

MAC Xbar

ADCs

DACs

Others

(a) Energy breakdown (b) Area breakdown

Buffers

Others

Controller

H-tree

MAC Engine

CAM Engine

Figure 9: (a) Energy and (b) Area breakdown of PIM-DH.

We also investigate the energy consumption and area of each
component in PIM-DH. Fig. 9(a) demonstrates the energy break-
down of the main compute engines (i.e., MAC compute engine and
CAM compute engine) in the PIM-DH, where the MAC compute
engine consumes most (67.92%) of energy (including MAC cross-
bar (MAC Xbar), ADCs, and DACs). The energy consumption for
the hash computation makes full use of the search mechanism of
CAM and the leakage mechanism of the designed circuits (Label-C
mentioned in Section 5.2). Thus, the CAM compute engine occu-
pies 11.37% energy is consumed by the precharging, leakage, mask
register, etc. Other components cost 20.71% energy, consisting of
the buffers and peripheral circuits for the hash generation. We can
also observe that the area breakdown of PIM-DH in Fig. 9(b). The
MAC compute engine (MAC engine) occupies 69.79% of the total
area, where the H-tree costs 0.27% area, and the CAM compute
engine (CAM engine) occupies 9.78% of the total area. The buffers,
others (peripheral circuits), and controllers occupy 7.31%, 3.47%,
and 9.38% area, respectively.
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Figure 10: Analyzation of the length of hash sequence.

Varying length of hash sequence. Fig. 10 demonstrate the re-
sults on PIM-DHwith different length of hash sequence. The results
normalized to the modified CASCADE. HashNet with a short hash
sequence shows the best performance on PIM-DH, while HashNet
with a long hash sequence shows the most significant energy effi-
ciency on PIM-DH. Such an improvement is mainly attributed to
the gain of searching the gallery.

7 CONCLUSION
In this work, we propose PIM-DH, an execute-search dual-engine
PIM architecture to accelerate the computation of deep hashing
methods, including the hash sequence pruning method, peripheral
circuits, and simple but effective PIM architecture. Our scheme not
only exploits pruning methods to improve the retrieval efficiency
but also leverages the characteristics of the CAM search mechanism
to design peripheral circuits to optimize the overhead of hash com-
putation. Experiments show that our PIM-DH achieves significant
improvement in energy efficiency, performance, and accuracy.
ACKNOWLEDGMENTS
This work was partially supported by the National Natural Science
Foundation of China (NSFC) (Grant No. 61834006, 62102257 and
62104140), the National Key Research and Development Program
of China (2018YFB1403400), Lingang Laboratory "Qiusuo Distin-
guished Young Scholar" Open Research Fund (Grant LG-QS-202202-
11) and Biren Technology–Shanghai Jiao Tong University Joint
Laboratory Open Research Fund. We thank Wu Wen Jun Honorary
Doctoral Scholarship, AI Institute, Shanghai Jiao Tong University.
Li Jiang is the corresponding author (ljiang_cs@sjtu.edu.cn).
REFERENCES
[1] Yue Cao et al. 2018. Deep cauchy hashing for hamming space retrieval. In CVPR.
[2] Z. Cao et al. 2017. Hashnet: Deep learning to hash by continuation. In ICCV.
[3] Nagadastagiri Challapalle et al. 2020. GaaS-X: Graph analytics accelerator sup-

porting sparse data representation using crossbar architectures. In ISCA.
[4] Teyuh Chou et al. 2019. Cascade: Connecting rrams to extend analog dataflow in

an end-to-end in-memory processing paradigm. In MICRO.
[5] Tat-Seng Chua et al. 2009. Nus-wide: a real-world web image database from

national university of singapore. In CIVR.
[6] Jia D. et al. 2009. Imagenet: A large-scale hierarchical image database. In CVPR.
[7] Udit Gupta, Carole-Jean Wu, et al. 2020. The architectural implications of face-

book’s dnn-based personalized recommendation. In HPCA. IEEE.
[8] Huize Li et al. 2020. ReSQM: Accelerating Database Operations Using ReRAM-

Based Content Addressable Memory. TCAD (2020).
[9] Fangxin Liu et al. 2021. Bit-Transformer: Transforming Bit-level Sparsity into

Higher Preformance in ReRAM-based Accelerator. In ICCAD.
[10] Fangxin Liu et al. 2021. SME: ReRAM-based Sparse-Multiplication-Engine to

Squeeze-Out Bit Sparsity of Neural Network. In ICCD.
[11] H. Liu et al. 2016. Deep supervised hashing for fast image retrieval. In CVPR.
[12] Julian McAuley et al. 2015. Image-based recommendations on styles and substi-

tutes. In SIGIR.
[13] Naveen Muralimanohar et al. 2007. Optimizing NUCA organizations and wiring

alternatives for large caches with CACTI 6.0. In MICRO. IEEE.
[14] Elbruz Ozen et al. 2021. Evolving Complementary Sparsity Patterns for Hardware-

Friendly Inference of Sparse DNNs. In ICCAD.
[15] Ali Shafiee et al. 2016. ISAAC: A CNN accelerator with in-situ analog arithmetic

in crossbars. ACM SIGARCH Comput. Archit. News (2016).
[16] Synopsys. [Online]. https://www.synopsys.com/community/university-

program/teaching-resources.html.
[17] Jizhe Wang, Pipei Huang, et al. 2018. Billion-scale commodity embedding for

e-commerce recommendation in alibaba. In KDD.
[18] Lei Wu et al. 2012. Tag completion for image retrieval. PAMI (2012).
[19] Rui Yang et al. 2019. Ternary content-addressable memory with mos 2 transistors

for massively parallel data search. Nature Electronics (2019).
[20] Xiaoxuan Yang et al. 2020. ReTransformer: ReRAM-based processing-in-memory

architecture for transformer acceleration. In ICCAD.
[21] Li Yuan et al. 2020. Central similarity quantization for efficient image and video

retrieval. In CVPR.
[22] Tianyun Zhang et al. 2018. A systematic dnn weight pruning framework using

alternating direction method of multipliers. In ECCV.
[23] H. Zhu et al. 2016. Deep hashing for efficient similarity retrieval. In AAAI.

https://www.synopsys.com/community/university-program/teaching-resources.html
https://www.synopsys.com/community/university-program/teaching-resources.html

	Abstract
	1 Introduction
	2 BACKGROUND AND MOTIVATION
	2.1 Deep Hashing Method
	2.2 ReRAM-based PIM Designs

	3 MOTIVATION AND KEY IDEA
	4 RELEVANCE-AWARE PRUNING
	5 PIM-DH ARCHITECTURE
	5.1 Overall Architecture
	5.2 CAM Search Mechanism Optimization

	6 EVALUATIONS
	6.1 Experiment Setup and Benchmark
	6.2 Results and Analysis

	7 CONCLUSION
	References

